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Homogeneous equilibrium two-phase flows are characterized by important vari-
ations of the local Mach number. Indeed, the sound speed can be several orders of
magnitude higher in the liquid phase than in the two-phase mixture. For the sim-
ulation of such flows, a numerical method which can handle accurately any Mach
number is thus necessary. In this paper, we investigate the applicability of precondi-
tioned finite volume schemes for these problems. Specifically, we use Roe’s scheme
with Turkel’s preconditioning, in a time-consistent formulation which allows tran-
sient computations. We introduce an original extension of Roe’s scheme to fluids
with arbitrary equations of state. We establish some stability results for the method.
Numerical results are given for a two-phase bump channel flow in subsonic and
transonic regimes. c© 2000 Academic Press
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1. INTRODUCTION

In compressible flows, different regimes are determined by the Mach numberM . When the
Mach number becomes low, the compressible equations are stiff. One can thus expect a loss
of accuracy or at least of efficiency when trying to solve the compressible equations in the
low Mach regime. For this reason, it is often advisable to use specific models which remove
the stiffness from the equations. These models are derived by expanding the equations in
terms of a reference Mach number, considered as a small parameter.

Generally, the relative pressure variations in a low Mach number flow are of orderO(M2),
and the acoustic waves can be neglected. If the relative density variations are small, the result
of the expansion is the incompressible (or, rather, constant density) model; see e.g., [15].

On the other hand, if large variations of the density are enforced by the boundary condi-
tions, the assumption of a constant density is not valid. This situation occurs, for instance, in
natural convection when the temperature discrepancy becomes large. A specific “low Mach
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number” model, obtained by filtering out the acoustic waves, can be used in this case; see
[8, 19, 21]. In this model, the relative pressure variations are still of orderO(M2), but the
relative density variations can now be of orderO(1).

Finally, computing the propagation of acoustic waves in a low Mach number flow requires
a model withO(M) pressure variations; see [12, 18].

These approaches assume that the Mach number is uniformly low in time and space.
There are however situations when the Mach number is low only in a limited region of the
space-time domain. The initial and/or boundary conditions can lead to large variations of
the Mach number: consider for instance the case of a supersonic jet in a fluid at rest. The
geometry can also be responsible for variations of the Mach number, as in a nozzle with a
large variation of the section. Finally, variations of the Mach number can be caused by the
underlying physics: acceleration of a flame and phase change phenomena. In these cases,
it is impossible to define a reference Mach number and thus to expand the equations with
respect to this value: compressible equations, no matter how stiff, must be used.

Most numerical methods designed for compressible flows are unable to deal with the
stiffness of the equations in the low Mach regime. Indeed, although the formal order of
accuracy is not changed, the magnitude of the approximation error grows linearly with 1/M .
Roughly speaking, the numerical solutions on reasonable meshes become meaningless as
soon asM < 0.1. This phenomenon was recognized by Volpe [34] among others, analyzed
heuristically by Turkel [29], and more rigorously by Guillard and Viozat [10] on regular
meshes.

However, preconditioned compressible (PC) solvers [3, 5, 10, 29, 30] are able to deal with
the stiffness of the equations in the low Mach regime. Comparisons with incompressible and
low Mach solvers [20, 33] show the excellent quality of the numerical results for flows with
a uniformly low Mach number. In other words, when a specific incompressible or low Mach
model can be used, a comparable solution can be found with a PC solver. The choice between
the first and the second group of methods is therefore a matter of taste: incompressible
and low Mach solvers should naturally be more efficient in terms of computational time,
but finite volume PC solvers have interesting properties: exact conservation, equal space
interpolation, absence of a user-defined parameter, and unstructured grid capability.

Still, the real advantage of the preconditioned compressible solvers is their ability to
simulate flows that do not meet the uniform low Mach number assumption. The main
purpose of the present paper is to demonstrate this ability, in the context of equilibrium
two-phase flows.

Historically, the first PC solvers developed by Turkel [28] were restricted to steady-state
computations. This fact has somewhat limited the interest of the CFD community in these
solvers. It thus seems important to note that time-accurate PC solvers do exist and are able
to simulate accurately unsteady flows. Explicit PC solvers can be made time-accurate by
using a dual time-stepping algorithm (see [2, 31]), but the most natural and efficient way
to restore time-accuracy is to use implicit time-stepping; see [10, 5]. We will develop this
point and illustrate it by numerical examples.

In the time-consistent approach, preconditioning only affects the artificial viscosity matrix
of upwind schemes. In this paper, we will study the sub-class of preconditioners which can
be symmetrized along with the quasi-linear equations. For this class of preconditioners,
we show that the preconditioned viscosity matrix of the upwind scheme is a well-defined
positive semi-definite matrix. As a corollary, we prove that the implicit scheme is linearly
stable on arbitrary grids.
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Recently, Bijl and Wesseling [1] introduced a pressure-based numerical method on stag-
gered grids which can be used for variable Mach number flows. This method seems to be
a promising alternative to PC solvers. The use of staggered grids and the correction step
makes the implementation somewhat more difficult than upwind PC solvers. On the other
hand, the pressure correction scheme becomes an incompressible solver whenM = 0, which
is not the case with the PC approach.

Let us now briefly give the outline of the paper. In Section 2, we present the homogeneous
equilibrium two-phase flow model, with a particular emphasis on the variations of the sound
speed.

In Section 3, we introduce the time-consistent PC finite volume scheme and we establish
some properties of the scheme. Our preconditioned numerical flux is based on Roe’s scheme.
We detail our extension of Roe’s scheme for the equilibrium equation of state. Details on
the preconditioning strategy are given in Section 4.

Section 5 deals with numerical results. To illustrate the improvement brought about by the
preconditioner, we compute the evolution of a point-wise disturbance in a subsonic uniform
flow. Then, we compute an equilibrium two-phase flow in a simple “bump channel” geom-
etry. We present steady-state subsonic and transonic solutions and an unsteady computation
with variable boundary conditions.

Finally, we draw some conclusions and comments in Section 6.

2. THE HOMOGENEOUS EQUILIBRIUM MODEL FOR TWO-PHASE FLOWS

2.1. Introduction

In this section, we briefly introduce the homogeneous equilibrium model (HEM) for
two-phase flows. For further details, we refer the interested reader to the classical articles
of Stewart and Wendroff [26, Sect. 4.3] and Menikoff and Plohr [16, Sect. V]. In spite of
its simplicity, this model has often been used for the simulation of heat exchangers (see,
e.g., [9, 22, 27]) and for the analysis of critical two-phase flows in variable section ducts
(see [24] and the references therein). It is particularly well-adapted to the simulation of
dispersed bubbly flow.

The shortcomings of this model are well known: it cannot reproduce strong kinetic or
thermodynamic non-equilibrium effects such as occur, for instance, in annular flows or gas
flows with droplets. When non-equilibrium effects are small, they can be accounted for
by correction terms (drift flux velocity, subcooled boiling models). When they are more
important, additional equations are needed for an accurate prediction. To account for kinetic
non-equilibrium effects, one has to introduce a balance equation for the momentum of each
phase. This leads to the so-called two-fluid models, which are more complex to analyze and
simulate than the HEM. Thermodynamic non-equilibrium, on the other hand, is relatively
easier to handle, since it does not affect directly the dynamics of the flow. A balance equation
for the mass of one of the phase can be added to the mixture mass conservation equation,
with appropriate mass transfer source terms for phase change.

This work however is restricted to the homogeneous equilibrium model. Our reason for
choosing this simpler model is to underline one specific aspect of two-phase flows, namely
the large variations of the sound speed. This feature exists in other more sophisticated
models, in which additional modeling and numerical problems arise. Much effort has been
spent so far on the simulation of flows in which both phases are always present, albeit
at very small concentrations. Paradoxically, it turns out that the transition between pure
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liquid and two-phase flows is more difficult to compute, because of the brutal change of
compressibility.

A different and perhaps more difficult problem occurs at the transition between pure
vapor and two-phase mixture: the equation of state exhibits a non-convex behavior which
can yield non-unique solutions (see [13, 16]). In this case, the use of the HEM is therefore
questionable. This phenomenon is however outside the scope of this paper.

2.2. Equations

In the homogeneous equilibrium model of liquid/vapor flows, we assume that the phases
are in kinematic and thermodynamic equilibrium. The phases share the same pressure,
temperature, and velocity. Therefore, the evolution of the mixture can be described by
Euler equations for a single fluid

∂tρ+ div(ρu) = 0, (1)

∂tρu+ div(ρu⊗ u)+∇ p = 0, (2)

∂tρE+ div(ρuH) = 0. (3)

HereE= e+ |u|2/2 denotes the total energy andH = h+ |u|2/2 the total enthalpy of the
mixture. To close the system, the equation of state links the pressurep to the conservative
thermodynamic variablesρ andρe. The pressure law must be such that the partial derivatives
χ andκ with respect toρ andρe satisfy

κh+χ > 0.

The sound speedc of the fluid is the square root of this quantity.

2.3. Equation of State

The equilibrium equation of state is more conveniently expressed as a function which
gives the density of the mixtureρ in terms of the pressurep and the enthalphy of the
mixtureh. Suppose we know the density of each phase as a function of the pressurep and
enthalpyh: ρ`(p, h) for the liquid andρv(p, h) for the vapor. Moreover, the values of the
enthalpy of each phase at saturation are given as functions of the pressure:hsat

` (p) for the
liquid, hsat

v (p) for the vapor. We first define the qualityx of the mixture as

x= h− hsat
`

hsat
v − hsat

`

.

If x< 0, then the density of the fluid is that of the liquid,ρ= ρ`(p, h). Similarly, if x> 1,
then the density is that of the vapor,ρ= ρv(p, h). In the two-phase domain, i.e., when
0≤ x≤ 1, the density is given by

1

ρ
= x

1

ρsat
v

+ (1− x)
1

ρsat
`

,

where the density at saturation of phasek satisfies, for continuity,

ρsat
k (p)= ρk

(
p, hsat

k (p)
)
.

In practice, the functionsρk(p, h) and hsat
k (p) are given as bi-cubic and cubic splines

with tabulated values. The partial derivatives of the equation of state can be computed by
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FIG. 1. Equilibrium equation of state for water,ρ as a function ofp andh. The derivatives of the equation
are discontinuous along the saturation line which separates the liquid (rear) from the two-phase domain (front).
The discontinuity is stronger for lower values of the pressure.

differentiating the local interpolation function. In the framework of the conservative Euler
equations, it is useful to expressp as a function of the thermodynamic conservative variables
ρ andρe: this can be done using Newton’s method.

The main characteristic of the equilibrium equation of state is the presence of a “kink”
(discontinuity in the derivatives) along the saturation curve which separates the single
phase and the two-phase domains. This fact is clearly visible in Fig. 1, which shows the
equilibrium equation of state for water. This kink is responsible for the large variation of
the sound speed. For instance, the sound speed in the liquid at saturation under a pressure
of 5 Mpa is 1080 m· s−1, and 34 m· s−1 in the mixture.

3. FINITE VOLUME SCHEME AND NUMERICAL FLUX

3.1. Finite Volume Discretization

The Euler equations take the form of a system of conservation laws,

∂tU + div F(U ) = 0. (4)

We want to discretize this system by a finite volume method. Let us consider a triangu-
lation of the computational domain by polygonal cells. For a cellK , we denote by|K | its
volume,∂K its boundary, andN (K ) the set of neighboring cells. IfJ ∈N (K ), the common
interface is thus∂K ∩ ∂ J: its surface is|∂K ∩ ∂ J| andnK J denotes the unit normal to the
interface, oriented fromK to J. Finally, we denote byδt the step of the time discretization.

The finite volume method for the solution of the system of conservation laws (4) takes
the form

|K |
δt

(
Un+1

K −Un
K

)+ ∑
J∈N (K )

|∂K ∩ ∂ J|8K J = 0. (5)

Here,Un
K denotes the average value of the solution in the cellK , at timenδt .
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To completely determine the numerical method, we have to specify the expression of the
numerical flux8K J in terms of the cell average values. As usual, first order schemes
are obtained if8K J depends on the two neighboring cell valuesUK and UJ : 8K J =
8(nK J,UK ,UJ). Higher order schemes can be constructed on this basis ifUK andUJ

are replaced by appropriate interpolations.
Finally, the cell values can be taken either at timenδt (explicit time-stepping) or(n+1)δt

(implicit time-stepping). In the latter case, an approximate or exact Jacobian of the numerical
flux is needed. This point is addressed in more detail in [6].

3.2. Roe’s Scheme

The starting point of our numerical scheme is Roe’s flux [23],

8(n,UL ,UR) = 1

2
(F(UL)+ F(UR)) · n− 1

2
|An|(UR−UL). (6)

HereAn=An(UL ,UR) is the so-called Roe matrix for the system. From now on, we will
drop the subscriptn for brevity, whenever possible. The numerical viscosity matrix is defined
by |A| =∑i |λi |r i ⊗ l i , if A =∑i λi r i ⊗ l i is the eigen-decomposition ofA.

For completeness, we give a compact and efficient algorithm to compute Roe’s numerical
flux. We first introduce average values for the density, velocity, total enthalpy, and speed of
sound. For the first three, we use Roe’s definition,

ρ̃ = √ρLρR, ũ =
√
ρLuL +√ρRuR√
ρL +√ρR

, H̃ =
√
ρL HL +√ρRHR√
ρL +√ρR

. (7)

The average value for the speed of soundc will be discussed later. Finally, letũn = ũ · n
be the normal component of the velocity. The numerical flux is computed with the following
algorithm:

DEFINITION 3.1 (Algorithm 1).

• If |ũn| > c, the scheme is totally upwind:
—if ũn > 0, 8 = F(UL),
—if ũn < 0, 8 = F(UR).
• In the subsonic case|ũn| ≤ c:

—if ũn > 0, 8 = F(UL)+ (ũn − c)(1U )−

—if ũn ≤ 0, 8 = F(UR)− (ũn + c)(1U )+.

It remains to give the definition for(1U )±,

(1U )± = [[ p]] ± ρ̃c[[un]]

2c2

 1
ũ± cn

H̃ ± ũnc

 ,
where the notation [[α]] stands for the jump between the left and right values of the quantity
α, i.e.,αR− αL .
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3.3. Choice of the Average Sound Velocity

In the case of a perfect gas, Roe suggested the following average value forc,

c2 = (γ − 1)[ H̃ − ũ · ũ/2].

This choice leads to the following property:

PROPERTY3.1. If F (UL) = F(UR), then8 = F(UL) = F(UR).

An immediate corollary of this property is the fact that stationary shocks (even non-
entropic ones) are preserved by Roe’s flux. For the proof of these statements, we refer to
[23].

This property was extended to general equations of state by [32], among others. Their
choice for the average sound of speed is

c2 = κ̄[ H̃ − ũ · ũ/2]+ χ̄ ,

whereκ̄ andχ̄ are averaged values for the partial derivatives of the pressure, satisfying

[[ p]] = κ̄[[ρe]] + χ̄ [[ρ]] .

In this context, several authors have proposed different ways to construct the average values
κ̄ and χ̄ ; see for instance [17, 27, 32]. Unfortunately, no decisive physical or numerical
argument can be advanced in favor of any of these methods.

Another problem is posed by the presence of discontinuous pressure derivatives in the
HEM. Indeed, any attempt to compute average values of discontinuous quantities becomes
hazardous. Specifically, the average values could yield a non-positive value forc2, which
would doom the numerical flux.

Instead we propose to use the algorithm of Definition 3.1 and define the average value
c directly without using ¯κ and χ̄ . Such choices generally do not satisfy Property 3.1.
This property is generally thought to be a crucial aspect of Roe’s numerical flux. How-
ever, our experience shows that infringing upon this property by choosing other definitions
for c can improve the robustness and the simplicity of the scheme without serious im-
pact on the precision. This aspect will be the subject of a coming paper. In the present
work, our main interest is in avoiding the determination of the average coefficients ¯κ

andχ̄ .
If the left and right states are both in the liquid or in the mixture domain, we use the

average value

c = max(cL , cR).

If not, we use the choice

c = min(cL , cR).

Experience shows that this choice leads to a robust and efficient scheme in subsonic and
transonic regimes.
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4. PRECONDITIONING FOR LOW MACH NUMBER FLOWS

4.1. Time-Consistent vs Pseudo-Transient Preconditioning

At this point, one can introduce two modifications in the context of low Mach number
flows.

First, one can replace the time integration (5) by a preconditioned formulation,

|K |
δt

P−1
(
Un+1

K −Un
K

)+ ∑
J∈N (K )

|∂K ∩ ∂ J|8K J = 0, (8)

whereP is a properly chosen non-singular matrix. This matrix may, or may not, depend
on the local value in the cellUK . It is clear that formulation (8) is not time-consistent. It
can thus be used only for steady-state computations, to improve either the convergence of
explicit schemes, or the conditioning of the Jacobian in implicit schemes.

On the other hand, the numerical flux itself can be preconditioned, replacing (6) by

8P(n,UL ,UR) = 1

2
(F(UL)+ F(UR)) · n− 1

2
P−1|PAn| (UR−UL) . (9)

Here the preconditionerP may depend onUR and UL , or rather on an average value.
This formulation is meant to improve the spatial discretization of the numerical method.
Numerical examples of this improvement can be found in [5, 10, 30].

The preconditioned flux (9) can be used either in the original (5) or preconditioned (8)
formulation. In the latter case, two different preconditioners may be used. As in [10], we
advocate the use of the original time-consistent formulation (5), with the modified numerical
flux (9). This will enable us to simulate unsteady flows (see Section 5).

We can write this implicit scheme with the usual “delta” form. LetδUK = Un+1
K − Un

K

be the time increment ofUK . We have to solve

|K |
δt
δUK +

∑
J∈N (K )

|∂K ∩ ∂ J|(∂UL8P · δUK + ∂UR8P · δUJ
)

=
∑

J∈N (K )
|∂K ∩ ∂ J|8P

(
Un

K ,U
n
L

)
. (10)

Equation (10) gives the time incrementδU as the result of a sparse, non-symmetric linear
system. This increment is used to update the solution. We followed the common practice
with Roe-type schemes of replacing the partial derivatives of the numerical flux∂UL8P and
∂UR8P by simpler approximations.

More details on the implicit formulation can be found in [6].

4.2. Choice of the Preconditioner

Equation (9) defines a new family of fluxes, depending on the choice of the preconditioner
P. Note that ifP is a scalar matrix, we recover the original flux (6). If not,An and P
do not commute, for almost every spatial directionn. Thus, the viscosity matrix of the
preconditioned scheme is modified:P−1|PAn| 6= |An|.

It is worthwhile noting that the preconditioned numerical flux does not belong to the
family of approximate Riemann solvers, in the sense that it does not approximate Godunov’s
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flux up to second order in‖UR − UL‖. In other words, it is not linearly equivalent to
Godunov’s flux. The one-dimensional Riemann problem has often been regarded as an
essential building block of finite volume schemes. Recently however, new fluxes were
introduced, which are based on different ideas: cf. the AUSM [14] or the CUSP [11]
schemes for instance.

In the 1-D case, the Riemann problem is a very relevant building block: as expected, the
approximate Riemann solvers give very good results, even at low Mach number. This is not
the case however for subsonic flows in higher dimensions. The reason is that shear waves in
higher dimensions are incorrectly analyzed as a sum of a shear wave and an acoustic wave by
the approximate Riemann solvers. The effect of these spurious acoustic waves is dramatic
at low Mach number. Typically, they result in pressure and Mach number discontinuities
aligned with the grid lines on a regular mesh. This phenomenon will be illustrated by a
numerical example in Section 5.

Looking at the orders of magnitude of the coefficients in the Jacobian matrixA, Turkel
[28] was able to derive a heuristic condition on the coefficients of the viscosity matrix to
make the scheme accurate at low Mach numbers. According to Turkel, the viscosity matrix,
expressed in primitive variables(p, u, S), should have the following orders of magnitude,O(1/M2) O(1/M2) 0

O(1) O(1) 0

0 0 O(1)

.
As a result, the trace of the viscosity matrix should be of orderO(1/M2). Since we

expect this matrix to have non-negative real eigenvalues, it means that its spectral radius is
also of orderO(1/M2). A tedious computation shows that this is indeed true for Turkel’s
diagonal preconditioner and for the van Leer–Lee–Roe preconditioner; see [4, Chap. 4].
Thus, the maximum explicit time-step should be of orderO(M2), instead of the expected
O(M) given by the CFL condition. In other words, no explicit scheme, stable under the CFL
condition, can give correct results at low Mach numbers. This is consistent with the fact
that time-accurate incompressible solvers always involve an implicit step, since the projec-
tion operator on the space of divergence-free vectors involves an elliptic problem.

The time-accurate preconditioned solver (5)–(9) must therefore be used with an implicit
time-stepping in the low Mach number regime. To enhance the efficiency of the solver,
one could think of using a semi-implicit discretization, leaving the treatment of convective
waves explicit. Also, the discretization could be switched to a purely explicit one when the
Mach number goes to one. As far as we know, these possibilities have not yet been explored
in the framework of PC solvers.

4.3. Symmetric Preconditioning

In this section, we restrict ourselves to symmetrizable systems of hyperbolic equations.
This framework is well suited for the study of hyperbolic systems inRd, d> 1. As is well
known, this is not a serious restriction since all systems endowed with a mathematical
entropy are symmetrizable (see, e.g., [25]).

We assume that the Roe matrixA satisfies the following property: there exists a symmetric
positive definite matrixSsuch thatSAn is symmetric for alln. This property automatically
implies thatA has a complete set of real eigenvalues and eigenvectors. The usual Roe matrix
for the Euler equations satisfies this property (see below).
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We will require that the preconditionerP is such thatSP is also symmetric positive
definite. Although this property might not be valid for all existing preconditioners, it is true
for two important examples: Turkel’s diagonal preconditioner and the van Leer–Lee–Roe
preconditioner for the Euler equations.

The following lemma proves that the viscosity matrix of the preconditioned scheme
P−1|PA| (see Subsection 3.2) is well defined:

LEMMA 4.1. PA has a complete set of real eigenvalues and eigenvectors.

Proof. LetR be a non-singular matrix such thatRTR = S. We then set̃A = RAR−1 and
P̃=RPR−1. SinceÃ = R−T (SA)R−1, Ã is symmetric. Similarly,̃P is symmetric positive
definite. SincePA = RP̃ÃR−1, it is sufficient to show that̃PÃ has a complete set of real
eigenvectors.

Next, letQ be a non-singular matrix such thatQTQ = P̃. We have

P̃Ã = QT (QÃQT )Q−T .

Thus, P̃Ã is similar to a symmetric matrix, and thus has a complete set of real eigen-
vectors. ■

Finally, we show that the viscosity matrixΘ = P−1|PA| will indeed lead to a dissipative
numerical scheme:

PROPERTY4.1. SΘ is symmetric positive semi-definite.

Proof. Since we haveSΘ = RTΘ̃R with Θ̃ = P̃−1|P̃Ã|, it suffices to show that̃Θ is
also symmetric positive semi-definite. An easy computation yields

Θ̃ = Q−1|QÃQT |Q−T ,

which makes the proof obvious.■

This result is important because it shows that the implicit scheme is linearly stable:

PROPOSITION4.1. The implicit scheme is linearly stable for allδt > 0.

For completeness, we include a proof of this proposition in the Appendix.
The preconditioned flux has another interesting property which can be related to the local

extremum diminishing property for scalar equations or the total variation diminishing prop-
erty in the 1-D case. LetApos= 1

2(A+Θ) andAneg= 1
2(A−Θ). For the unpreconditioned

flux, Apos= A+ has only non-negative eigenvalues, andAneg= A− has only non-positive
eigenvalues. This is no longer true for the preconditioned flux, but the following property
holds:

PROPERTY4.2. SApos is symmetric positive semi-definite andSAneg is symmetric neg-
ative semi-definite.

4.4. Application to the Euler Equations

Symmetrizing the Jacobian matrix is not only useful for showing theoretical results, it
also gives a nice formulation of the preconditioned scheme and makes the computation
of the eigen-decomposition easier. As an illustration, we give the expressions of two well-
known preconditioners, namely Turkel’s diagonal preconditioner and the van Leer–Lee–Roe
(VLLR) preconditioner.
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For the Euler equations, a possible symmetrizing matrix is given by

R =

 χ + κ
2 |u|2 −κuT κ

−cu cI 0

−κ(H − |u|2) −κuT κ

 , R−1 = 1

c2

 1 0T −1
u cI −u

H cuT − 1
2|u|2

.
We have denoted byI and0 the identity matrix and the null vector ofRd. The symmetrized
JacobianÃn = RAR−1 takes the form

Ãn =

u · n cnT 0
cn (u · n)I 0

0 0T u · n

 .
We can see that the last variable (related to the entropy) is totally uncoupled (at least linearly)
from the others and will not be affected by preconditioning.

With this change of variables, we can define the preconditionerP asR−1P̃R.

4.4.1. Computation of the viscosity matrix.The viscosity matrixP−1|PA| can still be
written as a sum of rank-one matrices (cf. Subsection 3.2),

P−1|PA| =
∑

i

|λ̆i |r̆ i ⊗ l̆ i . (11)

However, this decomposition is no longer an eigen-decomposition. AlthoughPA can be
diagonalized directly, it is often easier to work with the symmetric form,QÃQT . The eigen-
values of this matrix give thĕλi of the decomposition (11). Letvi denote the corresponding
eigenvectors. Since

QÃQT =
∑

i

λ̆i vi ⊗ vi ,

we have

Ã =
∑

i

λ̆i (Q−1vi )⊗ (vi Q−T ),

and

A =
∑

i

λ̆i (R−1Q−1vi )⊗ (vi Q−TR).

Therefore

r̆ i = R−1Q−1vi , l̆ i = vi Q−TR.

Since the preconditioner does not change the signs of theλ̆i , an efficient algorithm like
Algorithm 1 (see Definition 3.1) can still be used.
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4.4.2. Turkel’s preconditioner.Turkel’s diagonal preconditioner is given in symmetric
form as

P̃= diag(β2, I , 1), (12)

whereβ is of the order of the Mach number. Obviously, this preconditioner can be expressed
under the formP̃= QTQ, with Q = diag(β, I , 1).

The parameterβ can be set to a constant reference value of the Mach number. In our case
however, it is crucial to use a local value to accommodate the large variations of the Mach
number,

β = |ũ|
c
,

whereũ andc are the interface average values (see Subsection 3.2). Other choices forβ

have been investigated recently by Darmofal and Siu [7], to enhance the stability of the
scheme near stagnation points, where the local Mach number can reach 0.

We now give the equivalent of Algorithm 1 for Turkel’s preconditioner. In the subsonic
case,|ũn| < c, we set

ν = (1− β2)ũn/2, γ =
√
ν2+ β2c2, α± = γ ± ν.

DEFINITION 4.1 (Algorithm 2). .

• If |ũn| > c, the scheme is totally upwind:
—if ũn > 0,8 = F(UL),
—if ũn < 0,8 = F(UR).
• In the subsonic case|ũn| ≤ c:

—if ũn > 0,8 = F(UL)+ (ũn − α+)(1U )−

—if ũn ≤ 0,8 = F(UR)− (ũn + α−)(1U )+,

with the following definition for(1U )±,

(1U )± = [[ p]] ± ρ̃α±[[un]]

2α±γ

 1

ũ± α±n

H̃ ± ũnα
±

 .
Note that whenβ = 1, we haveγ =α+ =α− = c, and the original Roe scheme

(Algorithm 1) is recovered.

4.4.3. The VLLR Preconditioner.The van Leer–Lee–Roe preconditioner for 2-D sub-
sonic flow can be expressed asP̃ = QTQ, whereQ is the product of an upper triangular
and a rotation matrix,

Q =


M −1 0 0
0 1 0 0

0 0
√

1− M2 0

0 0 0 1

 ·


1 0 0 0
0 ux/q uy/q 0

0 −uy/q ux/q 0

0 0 0 1

 .
In the original VLLR preconditioner, the second coefficient on the diagonal ofQ is actually
different: the difference is irrelevant in our case since it does not change the artificial
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viscosityP−1|PA|. In 3-D, the corresponding rotation matrix is not uniquely defined, and a
choice has to be made.

The preconditioned Jacobian takes the form

QÃQT =


un(M2− 1) 0 uτ

√
1− M2 0

0 un 0 0

uτ
√

1− M2 0 un(1− M2) 0

0 0 0 un

 ,
with un= uxnx + uyny anduτ =−uxny+ uynx. This matrix has another uncoupled vari-
able, which is related to the transport of the total enthalpy along streamlines at steady state
(see [30]).

We now give the equivalent of Algorithm 1 for this preconditioner. In the subsonic case,
|ũn| < c, we set

ν = ũn

√
1− M2, γ =

√
ν2+ u2

τ .

We denote bỹuT = (−uy, ux) the vector obtained by aπ/2 rotation ofu. We then introduce
θ = Atan(uτ /ν)/2. Then the preconditioned scheme is given by:

DEFINITION 4.2 (Algorithm 3). .

• If |ũn| > c, the scheme is totally upwind:
—if ũn > 0,8 = F(UL),
—if ũn < 0,8 = F(UR).
• In the subsonic case|ũn| ≤ c:

—if ũn > 0,8 = F(UL)− γ
√

1− M2(1U )−

—if ũn ≤ 0,8 = F(UR)− γ
√

1− M2(1U )+,

with the following definitions for(1U )±,

(1U )+ = 1

|ũ|2
(

cosθ [[ p]] + sinθ
ũT

√
1− M2

[[ρu]]

)
cosθ

cosθ ũ+ sinθ ũT√
1−M2

cosθ H̃

 ,
and

(1U )− = 1

|ũ|2
(

sinθ [[ p]] − cosθ
ũT

√
1− M2

[[ρu]]

)
sinθ

sinθ ũ− cosθ ũT√
1−M2

sinθ H̃

 .
Our experience [4] shows that the numerical results for the two preconditioners are quite

similar, although the VLLR preconditioner gives a better prediction of the total enthalpy.
On the other hand, Turkel’s diagonal preconditioner is easier to implement and has a natural
3-D extension. In the present work, we have only used Turkel’s preconditioner.

5. NUMERICAL RESULTS

In this section, we show some numerical results obtained with the time-consistent Roe–
Turkel scheme. In all cases, a linearized implicit time-stepping has been used. We first
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TABLE I

Initial Data for the Subsonic Acoustic Wave

At point ( 1
2
, 1

2
) Elsewhere

ρ 1.1 1.

u 0.1
v 0.01

compute the evolution of a point-wise perturbation in a uniform subsonic flow. The aim of
this test case is to show the effect of preconditioning the numerical flux. Since the properties
of the fluid are not important in this test case, we use a simpler barotropic pressure law.

We then turn to the two-phase flow simulations with the homogeneous equilibrium model.
We perform a steady-state and an unsteady computation in a “bump channel” geometry.

5.1. Acoustic Wave

The first example is the computation of a circular acoustic wave created by a pointwise
perturbation in a uniform flow. For this test case, an isentropic model suffices,

∂tρ + div(ρu) = 0

∂tρu+ div(ρu⊗ u)+∇ p(ρ) = 0.

We takep = 1
2ρ

2, so that the resulting system is formally equivalent to the Saint–Venant
equations of shallow water.

The initial data for this test case are a constant subsonic state (M = 0.1) with a point-wise
disturbance (see Table I). The exact solution is a circular acoustic wave expanding in time
and slowly advected with the flow. This simple test case aims at revealing the grid sensitivity
of the scheme.

We perform five implicit time steps withδt/δx = 1. A regular 60× 60 mesh is used.
The numerical results for Roe’s scheme and Turkel’s preconditioner are shown in Figs. 2, 3.

FIG. 2. Acoustic wave test case: density field. Notice the regularity of the wave front computed by the Roe–
Turkel scheme. The speed of propagation of the wave front is not affected by preconditioning, but the amplitude
of the variations diminishes.
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FIG. 3. Acoustic wave test case: Mach number field. Notice the discontinuity aligned with thex grid line
with Roe’s scheme. The Roe–Turkel solution is smoother.

For each scheme, we present the density field and the Mach numberM = |u|/c. The solution
computed by the Roe scheme presents a squarish wave front with discontinuities aligned
with the grid lines. The Mach number field shows an important discontinuity which is
aligned with thex grid line originating from the initial perturbation.

The solution given by the preconditioned scheme is smoother and less sensitive to the
mesh geometry. The extension of the wave front is correct, which shows that the time-
accuracy is not destroyed by preconditioning. The amplitude of the density variations is
larger for the Roe than for the Roe–Turkel scheme, which shows that more numerical
diffusion is added on the first equation. On the Mach number field however, the numerical
diffusion of the preconditioned scheme is smaller. Above all, the numerical diffusion is
almost isotropic, which is not the case for the unpreconditioned scheme.

5.2. Two-Phase Flow in a Channel with Bump

This section deals with the simulation of the homogeneous equilibrium model (1) intro-
duced in the first section. We consider a channel with a 20% sinusoidal bump (Fig. 4). The
boundary conditions are specified in Table II. At the inflow, the fluid is liquid but very close
to the saturation. As the pressure drops with the restriction of the section, a small concen-
tration of vapor appears. The Mach number changes dramatically after the transition. In the
first test case, the inlet velocity is such that the flow remains completely subsonic, although
with important compressibility effects. In the second test case, however, the Mach number
reaches one at the throat and a shock appears behind the bump.

The existence of shocks in flows with area restriction is particularly important for dimen-
sioning pipes, since they determine the maximum flow rate that can be reached. Although

FIG. 4. Channel with bump: 20× 80 structured mesh.
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TABLE II

Boundary Conditions for the Two-Phase Bump

Channel Flow

Inflow Outflow

h 1154.2 kJ/kg
u 10. m· s−1 p 50. 105 Pa
v 0. m· s−1

stationary shocks are rarely found in common liquid flows, they easily occur after a two-
phase transition. This problem has been intensely studied over the years, principally with
one-dimensional analyses (see, e.g., [24]. It is our hope that multidimensional simulations
will provide useful additional information for the design of valves and pipes subject to phase
transition.

5.3. Subsonic Solution

This computation is performed with a constant time step of 10−1. Convergence is reached
in less than 40 time steps (see Fig. 7). To monitor the convergence, we study the decrease
of the norm of the residual, i.e., the right hand side in Eq. (10).

The pressure profile is displayed in Fig. 5. As expected, no discontinuity can be detected
across the phase transition lines. However, the influence of the vapor is clearly visible on the
Mach number profile (Fig. 6, right), which shows sharp discontinuities. For both profiles,
the symmetry is quite satisfactory.

We also display the total enthalpy along the walls (Fig. 7) which should be constant in
this irrotational flow, according to Bernoulli’s theorem. The observed variation is typical
of a first order scheme. We underline the fact that no jump in the enthalpy can be observed
across the transition lines.

5.4. Transonic Flow

In this test case, the inlet velocity is higher (see Table III). The flow reaches Mach 1 at
the throat and a stationary shock forms behind the bump. The fluid then goes back to the
liquid state and the Mach number drops back to a small value.

For this test case, one must use smaller time steps because of the presence of the stationary
shock. The time-step is first set to 5· 10−2 during 6 iterations, then reset to 5· 10−3 as the
shock starts forming. After 100 iterations, the residual has lost 4 orders of magnitude. The
solution is displayed in Fig. 8 (pressure field) and Fig. 9 (Mach number field). Due to the large
variations of the Mach number across the phase transition line, the shock is hardly visible. It
is more easily seen on the pressure field. A better resolution of the shock would be obtained
with a finer mesh or a higher order discretization.

FIG. 5. Channel with bump. Left, pressure (min= 49.54 · 105 Pa, max= 50.11 · 105 Pa, 20 isolines). Right,
vapor concentration (min= 0,max= 1.66 · 10−3, 20 isolines).
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TABLE III

Boundary Conditions for the Two-Phase

Transonic Flow

Inflow Outflow

h 1154. kJ/kg
u 24. m· s−1 p 50. 105 Pa
v 0. m· s−1

FIG. 6. Channel with bump. Logarithm of the Mach number (min= 7.668·10−3, max= 0.4136, 80 isolines
in logarithmic scale). Note the sharp discontinuity along the phase transition line.

FIG. 7. Channel with bump. Left, history of the residual inL2 norm. Right, total enthalpy on the walls.

FIG. 8. Transonic flow in a channel with bump: pressure field (min= 39.908·105 Pa, max= 50.948·105 Pa,
10 isolines).

FIG. 9. Transonic flow in a channel with bump: Mach number field (min= 1.518 · 10−2, max= 1.0903,
10 isolines).
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FIG. 10. Loss of pressure simulation. Cells occupied by the liquid (white) or the two-phase mixture (black).
From left to right and top to bottom: time steps 5, 10, 15, 20, 25, 30, and 35 10−3 s.

5.5. Unsteady Flow

The time-consistent preconditioned solver is particularly intersting for the simulation of
unsteady flows. To illustrate this feature, we compute a flow with a varying outflow boundary
condition. The imposed pressure at outflow drops linearly fromp= 50.4 · 105 Pa att = 0
to p= 49.4 · 105 pa att = 0.5 s. The inlet enthalpy and velocity are kept constant. The
time-step is stillδt = 5 · 10−3 s. We observe the evolution in time of the transition between
the liquid and the two-phase mixture (Fig. 10). We can see the growth of the two-phase
patch which finally occupies the whole channel.

6. CONCLUSION

Two-phase flows are characterized by large variations of the Mach number, due to the
different compressibility of the liquid and the two-phase mixture. We have shown that a
preconditioned finite volume scheme based on Roe’s numerical flux is able to simulate
such flows, both for steady-state and unsteady applications. From the theoretical point of
view, the robustness of the solver can be linked to a generalization of the local extremum
diminishing property which is satisfied by the class of preconditioned upwind solvers.

The numerical results obtained with this method for steady-state and unsteady problems
seem satisfactory, although we still lack analytical or numerical results to validate them.

One could improve the efficiency by turning to a partially implicit scheme, in order
to reduce the size of the Jacobian matrix. The spatial accuracy should be improved by
introducing either a MUSCL-type reconstruction or a discontinuous-Galerkin method. For
unsteady problems, the use of a high order time-discretization would also be necessary. This
question is currently under examination; our concern is to keep the method efficient, which
is not so obvious for a fluid with a non-linear equation of state. In a recent study [6], we have
shown that spurious acoustic waves may occur in the vicinity of contact discontinuities and
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perturb transient simulations. Note that this phenomenon is not specific to our solver but
rather comes from the conservation form of the equations.

Finally, one would like to extend the numerical method to more general two-phase flow
models including kinematic and/or thermodynamic non-equilibrium effects. Whereas re-
laxing the thermodynamic equilibrium should not be a serious problem, a number of issues
must be addressed to simulate kinematic non-equilibrium models. First, one has to con-
struct an upwind compressible solver for the system of equations considered. This issue is
already quite a difficult one and is still an active area of research. Next, one should define
a preconditioner for the system. Here the major difficulty is to define the typical order of
magnitude of the pressure fluctuations. In a homogeneous low speed flow, they are of the
order ofρu2, whereu is the reference velocity of the fluid. With a model including two
velocities and one pressure, the picture is not so clear. Finally, our numerical method relies
on a coupled fully implicit formulation, which will be more difficult to handle in a model
with a large number of unknowns.

A. APPENDIX

Linear Stability of Implicit Finite Volume Schemes

In this appendix, we prove the linear stability of the implicit scheme, in the case of a
symmetric system with constant coefficients,

∂tU +
∑

Aα∂αU = 0.

The maticesAα, α = 1, . . .d, are constant symmetric matrices. In the linear case, the
upwind flux can be written in the form

8(n,UL ,UR) = 1

2
An(UL +UR)− 1

2
Θn(UR−UL). (13)

The proof applies to any numerical flux with a symmetric positive semi-definite viscosity
matrixΘ such thatΘn=Θ−n. In particular, the preconditioned flux belongs to this category.

For simplicity, we write8K J =8(UK ,UJ), AK J =AnK J , andΘK J =ΘnK J . We denote
by U = (UK )K∈Th the vector whose components are the discrete values ofU in each cell.
The notationM will refer to the matrix of the discrete flux operator. Specifically, the
component of the vectorMU corresponding to the cellK reads

(MU )K = 1

2|K |
∑

J∈N (K )
|∂K ∩ ∂ J|[AK J(UK +UJ)−ΘK J(UJ −UK )]. (14)

To simplify the analysis, we consider the case of periodic boundary conditions.
With the preceding notations, the implicit finite volume scheme takes the compact form,

(I d + δtM)Un+1 = Un.

We finally introduce a discreteL2 scalar product,

(U,V) =
∑

K

|K |UK · VK .

To prove the stability of the implicit scheme, we need to show that:

LEMMA A.1. For all vectorsU ,

(MU ,U) ≥ 0.
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Proof. We first compute(MU ,U) by taking the scalar product of each equality (14)
with |K |U K , and summing over all cells,

(MU ,U) =
∑

K

∑
J∈N (K )

|∂K ∩ ∂ J|8K J ·UK .

In this sum, we split the centered and the upwind part. Let

E1 = 1

2

∑
K

∑
J∈N (K )

|∂K ∩ ∂ J|AK J(UK +UJ) ·UK

and

E2 = 1

2

∑
K

∑
J∈N (K )

|∂K ∩ ∂ J|ΘK J(UK −UJ) ·UK .

We note that the term ∑
J∈N (K )

|∂K ∩ ∂ J|AK J =
∫
∂K

A · n ds

vanishes in the case of constant coefficients.
We can now rewriteE1 as a sum over all edges of the triangulation,

E1 = 1

2

∑
∂K∩∂ J

|∂K ∩ ∂ J|[AK JUJ ·UK + A J KUK ·UJ ].

SinceAn is symmetric andAK J =−A J K , we haveE1 = 0.
We perform a similar manipulation on the second term. We first rewriteE2 as a sum over

all the interfaces of the triangulation,

E2 = 1

2

∑
∂K∩∂ J

|∂K ∩ ∂ J|[ΘK J(UK −UJ) ·UK +ΘJ K(UJ −UK ) ·UJ ]. (15)

Now sinceΘ is symmetric andΘK J = ΘJ K , we can rewriteE2 as

E2 = 1

2

∑
∂K∩∂ J

|∂K ∩ ∂ J|[ΘUK ·UK − 2ΘUK ·UJ +ΘUJ ·UJ ]

= 1

2

∑
∂K∩∂ J

|∂K ∩ ∂ J|ΘK J(UK −UJ) · (UK −UJ). (16)

Thus,(MU,U) is a sum of non-negative terms, and the proof is complete.■

The stability of the implicit scheme follows from this inequality.

PROPOSITIONA.1. The implicit scheme is linearly stable for allδt > 0.

Proof. We simply remark that

(Un+1,Un+1) = (Un,Un+1)− δt (MUn+1,Un+1) ≤ (Un,Un+1).

Hence(Un+1,Un+1) ≤ (Un,Un) by the Schwarz inequality. ■
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